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The need for custom hardware to meet compute demands is ever increasing. However, the hardware description
languages that these accelerators are primarily built with were designed in the 1980s which means that they
are missing out on over 35 years of development in programming language design.

In this paper, we present Spade — a new hardware description language that takes inspiration from
modern software language design and aims to be more productive than traditional HDLs without sacrificing
performance. This is achieved through a mix of building abstractions for common hardware constructs such
as pipelines, and outright borrowing ideas from software, such as a type system that comes close in power to
that of Rust or Haskell.

Compared to contemporary hardware description languages such as Chisel, which are embedded in a
host language, Spade is a standalone language with a type system that is available in hardware, not just at
elaboration-time. Its abstractions also build on top of the RTL abstraction instead of replacing it as is done in
languages like BlueSpec and in high-level synthesis.
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1 Introduction

The software world has seen a steady stream of new programming languages over the past three
decades, with 14 out of the 18 most popular languages in common use today being created after
1990 [53]. In the hardware world, however, the vast majority of developers still use VHDL and
Verilog which were introduced in the mid 1980s [17]. Modern software development benefits greatly
from this continuous innovation, with modern languages significantly reducing the number of
bugs in projects [55], and providing significant boosts to developer productivity [9].

In this paper, we present Spade — a Hardware Description Language (HDL) which attempts to
bring some of these innovations from software languages into hardware description. Some features
are borrowed outright, for example, the strong static type system that many languages employ,
and the tooling that boosts developer productivity through helpful error messages, streamlined
dependency management, and effective debug tools.

Hardware is of course different from software in many crucial ways: It is inherently parallel,
development cycles — especially in ASIC designs — are much less agile, and “performance” is
always a tradeoff between area and runtime. In addition, while it is often reasonable to trade some
raw performance for developer productivity in software, this is not the case nearly as often in
hardware, since maximizing the system performance is the reason for building custom hardware in
the first place. For these reasons, many of the features that make modern software languages more
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productive or correct cannot be directly ported to hardware. Despite these mismatches, Turing
Award winners Hennessy and Patterson have argued that hardware development must become
more like software development to meet the growing need for custom hardware accelerators [22].

When outright borrowing features from software does not work, Spade instead borrows design
philosophy. In particular the overarching goal of the language is building abstractions that allow
developers to reason about their design at a higher level, while still giving full control over the
resulting hardware. Some examples of this include pipelining as a language feature, and a type
system that is expressive enough to build new hardware-specific abstractions.

For a language to be truly productive it must also come with appropriate tools. The Spade
compiler is built to provide helpful and clear error messages, its build system provides integrated
dependency management, and it has editor integration through the language server protocol.
For debugging, it provides integration with both cocotb and Verilator, and the Surfer waveform
viewer [48] was originally built for the language to enable productive debugging of Spade designs.

The primary goal in the design of Spade is not to invent completely novel features, it is to
build a language that is complete and productive for hardware designers today. This is done
primarily through incorporating ideas and features both from contemporary software langauges,
and hardware language research in a package that works well for day-to-day RTL hardware design.

The rest of the paper is structured as follows. Section 2 goes into more detail about the benefits
that modern languages provide, what features of those languages give the observed benefits, and
discusses how some of those benefits can be achieved in hardware. The basics of the language are
introduced in Section 3, and the native pipelining construct is described in Section 4. The type
system is described in detail in Section 5. The tools built for and around the language are discussed
in Section 6. The implementation of the compiler is briefly discussed in Section 7, and a comparison
with other contemporary HDLs is made in Section 8. Finaly, the target audience and goals of the
language are discussed in Section 9 before briefly discussing future work in Section 10.

2 Motivation for a Software-Inspired HDL

Over the past 35 years, the software world has seen a consistent stream of new programming
languages providing techniques and ideas to make software developers more productive. In the
2023 StackOverflow developer survey [53], 18 languages are used by more than 5% of respondents
and 78% of those languages first appeared after 1990. The situation in the hardware world is very
different. The 2022 Wilson Research Group Functional Verification Study [17] included questions
on which languages are used for design in FPGAs and ASICs, five languages are named explicitly:
VHDL, Verilog, SystemC, SystemVerilog, and C/C++. All of these originate before 1990. Though
SystemVerilog and SystemC are languages which appeared in the 2000s, they are supersets of
Verilog and C++ and as such retain many fundamental design issues of those languages. The survey
mentions one more category, “other”, but that category is used by less than 5% of respondents. This
means that the vast majority of hardware developers are missing out on 35 years of innovation in
programming language design, apart from incremental improvements to the languages which are
typically adopted very slowly by tool vendors.

In software, these new languages have a massive impact on developer productivity and program
correctness. For example, a study [9] conducted by Google showed that developers using Rust or Go
are twice as productive as developers using C++. In addition, 85% of surveyed developers are more
confident in the correctness of their Rust code compared to other languages. Similarly, [18] found
that 90% of interviewed developers mentioned that Rust makes them more confident that their
production code is bug-free. Another study, [55], found that “first time contributors to Rust projects
are about 70 times less likely to introduce vulnerabilities than first-time contributors to C++
projects”.
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Spade — A Modern Hardware Description Language 3

These massive gains in both productivity and correctness make it very attractive to explore if
similar gains can also be achieved in hardware, but to do so we need to understand where the gains
come from. Fulton et al. [18] identified several reported benefits of Rust that likely contribute to
these results. First there are of course technical benefits: Rust provides memory safety, concurrency
safety, immutability by default and no null pointers all of which over 80% of survey respondents
reported as benefits. Most survey respondents also reported performance as an important benefit.
There are also non-technical reasons listed as important benefits, most importantly that the tools
included with the language are good or excellent compared to other languages. A vast majority
also found that the compiler’s helpful error messages provide a major problem-solving benefit.

2.1 Technical Benefits and Abstraction

The technical benefits of software languages are the hardest to replicate, as many of them come from
abstractions designed specifically for the software domain. A prominent example is the ownership
and borrowing system that is central to Rust, and is an abstraction around a processor’s memory.
This abstraction cannot be applied in hardware as processors and memory as viewed through
a processor are at a much higher level of abstraction than hardware design. Taking a step back,
however, the idea of the ownership and borrowing system is to eliminate a common and costly
class of problems by adding an abstraction around the area where the problem arises, namely the
memory. This is certainly not exclusive to Rust, all high level languages use abstraction to hide
unimportant details and highlight or reframe other details in a way that makes them easier for
both the compiler and programmer to reason about. However, which details are important and
unimportant in software are often very different from hardware, which means that simply copying
the abstraction outright is doomed to fail. Instead, the abstractions in an HDL must be designed
specifically for the hardware domain with design inspiration from software.

Static type systems are a key component of most modern languages and many studies have
attempted to examine their utility with varying conclusions. There are several studies that attempt
to compare developer productivity between languages with dynamic and static typing, e.g. [21, 15]
though those studies are plagued by small sample sizes and/or analyzing the effects of types in
small exercises rather than large scale projects.

On the other hand, several studies have found benefits to using static types in the maintainability
and code quality of open source projects [26, 43] and correctness of projects in statically typed
languages. Additionally, it has been shown that 15% of bugs in public JavaScript [19] and Python
projects [25] would have been caught by type systems at compile time if the projects used TypeScript
in the JavaScript case, or MyPy type signatures in Python. While 15% may appear low at first sight,
it is worth remembering that these are the bugs that slipped through all code review and testing
getting far enough to be reported as bugs.

2.2 Performance

There are several ways to achieve the safety benefits that Rust provides, but many of them come
with a significant runtime cost. The unique benefit that made Rust stand out is that it relies heavily
on using zero cost abstractions, i.e. abstractions that have no runtime performance overhead. This
point is perhaps even more important in hardware than it is in software as the reason hardware is
built in the first place is to achieve better performance than software can provide. Again, the exact
zero cost abstractions that a language like Rust uses is in general not possible to port to hardware,
instead, this design philosophy should be a guiding principle in the design of new hardware focused
abstractions.
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2.3 Tooling

Unlike the previous areas, the tooling that makes modern software languages successful can pretty
easily be ported to hardware. Modern software build tools provide everything needed to build and
run a project. They allow developers to specify dependencies to include in the build, to download
and manage those dependencies, and run the tools required to build and run the project. A hardware
build tool can do the same things, the only difference being which build tools it calls. Similarly, the
rust compiler’s error messages are often praised as being very helpful, and this property can also
be replicated in an HDL compiler.

2.4 Hardware is Not Software

While borrowing features from software in order to make hardware design more productive is an
underlying design philosophy in Spade it is of course worth noting that hardware and software are
vastly different domains, and that blindly copying design decisions from software is most likely
going to end poorly.

First, the resulting physical chip is vastly different from a sequence of processor instructions.
Second, “performance” in software is generally easier to reason about. The most important metric
is almost always runtime with memory usage being a secondary, usually less important, concern
followed further by code size. There is also usually either zero or positive interplay between these
metrics; a reduction in memory usage means less allocations, which in turn results in a faster
program. Hardware, on the other hand, has a fundamental tradeoff between space and time. A
hardware designer can often trade an increase in chip area for a reduction in runtime. In addition, the
third metric of power consumption is often as important as runtime and area. For this reason, simply
having a “fast” language is not sufficient for efficient hardware design, the language must enable
convenient design space exploration in order to allow designers to make appropriate tradeoffs
between the metrics.

3 The Spade Language

With the background out of the way, we will start introducing the Spade language, starting with an
overview of the basic syntax and semantics. Listing 1 shows Spade code that describes a circuit
which blinks an LED at a configurable interval. The first line defines the interface of the unit.
It is an entity called blink which takes three inputs: clock, rst and max, and it returns a bool.
Units are the basic building blocks of circuits in Spade and come in three flavors: entity, function,
and pipeline. Functions, denoted fn, are the most restrictive, as they only allow combinational
logic!. Pipelines, denoted pipeline can have registers and are used for describing circuits with
a pipeline-like structure. They will be discussed in more detail in Section 4. Finally, entities can
contain sequential logic and do not enforce a specific structure, making them the most general unit.
For this blink example, we need a register to store a counter value, and we do not have a need for
pipelining, which is why it is defined as an entity. Functions, pipelines and entities are instantiated
differently which shows, at the call site, whether an instance is sequential or just combinatinoanl.
This is analogous to the distinction between functions and methods in BlueSpec [39].

Registers in Spade are a dedicated language construct, rather than something that is inferred by
synthesis tool. This makes them more compact, clearly communicates design intent, and eliminates
pitfalls?. On Line 2, a register called counter is defined. It is clocked on the positive flank of the
clk signal and reset back to ® synchronously if the rst input is true. The value of the register is

IThey are pure software terms
Zhttps://blog.award-winning.me/2017/11/resetting-reset-handling html
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1 entity blink(clk: clock, rst: bool, max: uint<20>) -> bool {
2 reg(clk) counter reset(rst: 0) =

3 if counter == max {

4 0

5 } else {

6 trunc(counter + 1)

7
8
9

};

counter > (max / 2)
10 }

Listing 1. Spade code which blinks an LED.

specified on Lines 3-7 and showcases some important properties of the language. First, Spade is
expression based and has only immutable variables. Rather than conditionally assigning the value
of counter in each branch of an if-statement, the if-expression returns a value which is assigned
to counter. As if-conditionals get compiled to multiplexers which select among several values, the
expression based approach is closer to the resulting hardware. In addition, this style makes it much
harder to accidentally create latches as it is a compilation error to forget to specify an output value
in each branch.

Spade is a statically typed language with type inference. This means that all values in the
language have a type that is known at compile time, but that the compiler can infer the type of
most values. For example, the value of counter is never specified by the user, but because it is
being compared with max whose type is uint<20>, i.e. a 20-bit unsigned integer, the compiler can
infer that counter must also be a 20-bit unsigned integer. Spade also prevents throwing away bits
implicitly. For example, since counter + 1 can overflow and require one more bit than counter,
its type is uint<21>. However, in this case, the result of the addition must be assigned to counter
which throws away information. This truncation must be done explicitly using the trunc function.
Finally, unlike languages like Haskell, Spade does not do whole-program type inference which is
why all the types of the unit are specified in its head. The type system is discussed in more detail
in Section 5.

The final expression in any block is the output of that block. This is true both for the output
(return value) of the unit specified on Line 9, as well as the result of each if branch on Line 4 and
Line 6.

One final thing to note in this example is that Spade code is more “linear” than conventional
HDLs. Units take a list of inputs and produce a single output (though that output may consist of
multiple values). The code is also read top-to-bottom with variables only being visible below their
definition, which is closer to modern software languages. In some cases, it is of course desirable to
have registers depend on each other, but this requires an explicit pre-declaration of the variable
using the decl keyword. For whole units which do not fit very well with this linear flow, such as
memories, Spade has special types called ports which are discussed in more detail in Section 5.7.

4 Pipelines

Pipelining is an important construct in most hardware designs, it allows designs to maintain a
high clock frequency and throughput at the cost of latency. However, despite their importance,
most HDLs require the user to manually build their pipelines, a process that is both tedious and
error-prone as one must make sure that computations are performed on values corresponding to
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1 pipeline(2) X(clk: clock, a: int<32>, b: int<32>) -> int<33> {
2 let x = inst(1) g(clk, a);

3 let product = a*b;

4 reg;

5 let sum = x + f(a, product)

6 reg;

7 sum

8 }

9

10 pipeline(1) g(..) -> int<32> {..}
11 fn f(...) -> int<32> {...}

Listing 2. Example of the pipelining construct in Spade.

Fig. 1. Hardware described by pipeline X by the Fig. 2.' Hf'mj‘iware described Py pipeline X by the
code in Listing 2 after changing the depth of g to

code in Listing 2. 9

the correct time step. In some cases, designers use patterns on their variable names, and ad-hoc
static checking tools to verify that the pipelining is correct [31]. In Spade, the language natively
supports describing pipelines, and the compiler ensures that those pipelines are used correctly.

To exemplify this, Listing 2 contains Spade code for describing the pipeline shown in Fig. 1. On
Line 1, the external interface of the pipeline is defined. On pipelines, this interface includes its
depth which is effectively the latency between the pipeline inputs and outputs. In this case, the
depth is 2. Including this depth in the external interface means that both a user and the compiler
can understand the timing behavior of pipelines without reading the body; they know that outputs
will arrive depth cycles after the inputs. Inside the pipeline, the reg statements tell the compiler
where to insert pipeline stages, registering all the variables visible above it. For example, after the
reg statements on Line 4, any use of the variables above it (in this case a, b, x, and product) will
refer to the registered copies. Currently, pipeline registers do not support resets and the clock used
for the pipeline registers is the first argument to the pipeline.

Since the compiler is aware of the latency of pipelines, it correctly handles nested pipelines. For
example, the variable x is not registered in the first stage, as it is the output of another pipeline
with a latency of 1. The compiler also ensures that pipelined results are not used before they are
ready. For example, if the user modifies the inner g pipeline to contain an extra stage as is shown
in Fig. 2, then the outer pipeline, X, will no longer behave as expected. This issue is caught by the
compiler which will emit the error message shown in Listing 3. The fix is simple, the user must
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error: Use of x before it is ready
— src/main.spade:5:15
|
2 | let x = inst(3) g(clk, a);
| - x is defined here at stage 0 with a latency of 3

let sum = x + f(a, product);

|
| A
| |
| x is unavailable for another 2 stages
| This is stage 1
|
= note: Requesting x at stage 1
= note: But it will not be available until stage 3
= help: Consider adding more reg; statements between the definition and use of x

Listing 3. Error emitted by the Spade compiler when describing the hardware in Fig. 2 without explicitly
referring to another stage.

1

2 let x = inst(2) g(clk, a) ;

3 let product = trunc(a*b);

4 reg;

5 let sum = stage(x output).x + f(a, product);
6 reg;

7 'X _output

8

Listing 4. Example of a stage reference used to access the original x signal without going through pipeline
registers.

either revert the change to g, or insert an additional stage on Line 4 and change the depth of X to 3.
Regardless of what fix is applied, once the code compiles again, the behavior of the pipeline will be
the same as it was originally (apart from latency) which enables purely mechanical retiming of
circuits without worrying about the behavior of the circuit changing.

4.1 Stage References

In most cases, the previous example prevented a logic bug in the circuit by requiring that outputs
from pipelines are only accessed in the stage they belong. However, in some cases it is desirable to
describe hardware which is not a pure pipeline. The user may in fact want to describe the hardware
shown in Fig. 2 or, perhaps more likely, they want to describe a pipeline with internal state such as
an accumulator or a processor pipeline register file with data forwarding. In these cases, Spade
supports stage references, an example of which is shown in Listing 4, where the code in Listing 2 has
been modified to describe the hardware in Fig. 2. On Line 7, the stage at which the output of g is
availble is given the name x_output, then the value of x is fetched from that stage on Line 5. Stages
can also be referenced by their offset from the current stage. For example, the data forwarding
logic in a pipelined processor can be written as Listing 5 where stage(+x) refers to variables in
the stage x cycles ahead of the current stage.
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1 let reg out = inst regfile(srca, srcb, stage(writeback).writeback)
2 reg;

3 let opa = if stage(+1).dest == srca {stage(+1).alu out}
4 else if stage(+2).dest == srca {stage(+2).alu out}
5 else {reg out.a};

6

7 let opb = if stage(+1).dest == srcb {stage(+1).alu out}
8 else if stage(+2).dest == srcb {stage(+2).alu out}
9 else {reg out.b};

10

11 let alu out = alu(insn, opa, opb);

12 reg;

13 // Memory reads are done here

14 reg;

15 'writeback
16 let writeback = (alu out, insn.dest)

Listing 5. Example of how the data path of a processor with data forwarding can be written in Spade.

4.2 Dynamic Behavior

As designs grow large, it is very common to require latency insensitive interfaces, for example, to
allow reading or writing data to external memories. The pipelines discussed so far are ill-suited for
this task as they will always consume and produce values. For this reason, Spade allows specifying
a condition for a stage to accept inputs as reg[condition]. Every clock cycle where condition is
false, the stage is disabled and the registers will retain their previous value rather than updating to
the value from the preceding stage. This effectively stalls the pipeline. The condition propagates
upwards, so any stage before a disabled stage will also be stalled.

For interactions with the outside world, it is important to know if a stage is ready to accept inputs
or if the contents of a stage is valid. This information can be read from the special expressions
“stage.ready” and “stage.valid”.

To exemplify this, Listing 6 shows how this can be used to perform stalls in a pipelined CPU. As
there is cross dependencies between stages, the code is easiest to understand by first discussing
the reg statement on Line 11. It disables the stage if the instructions in the decode- or execute
stages are jumps, or if the decode stage contains a load instruction. When the pipeline is stalled,
the stateful parts of the processor must be modified to accommodate this, which is done in two
places in this example. The program counter logic on Line 1 uses the stage. ready expression is
used to keep the previous program counter value during clock cycles where the pipeline is stalled.
Downstream of the stall, on Lines 16-17, stage.valid is used to disable writes to the register file
and prevent jumps during clock cycles where the upstream pipeline was stalled.

It is worth noting that the current implementation does not automatically propagate stall condi-
tions to sub-pipelines, which means that developers must manually ensure that nested pipelines
with stalls are correct’.

5 Type System

A type system is a central component of any programming language and can serve many purposes.
The most basic purpose is to dictate the storage requirements for values. This is of course required

3This issue is being tracked in https://gitlab.com/spade-lang/spade/-/issues/279
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reg(clk) pc = match (stage.ready, stage(mem).jump destination) {
(false, ) => pc

(true, Some(dest)) => dest,

(true, None) => trunc(pc+l)

reg;

let stall = stage(decode).is jmp

1
2
3
4
5 }
6
7
8
9 || stage(execute).is jmp

10 | | stage(decode).is load;
11 reg[rst || !stall];

12 'decode

13 Ce

14 reg;

15 ‘execute

16 let regfile we = stage.valid && should write insn_result(op);
17 let jump destination = if stage.valid && is jmp && jump taken {
18 Some(int to uint(jump_target))

19 } else {

20 None()

21 }

22 reg;

23 "mem

25 reg[memory.valid];

Listing 6. Excerpt from a pipelined RISC-V implementation which showcases the use of register conditions,
as well as stage. ready and stage.valid.

in an HDL in order to allocate bit widths to operators and registers. The type system in Verilog
pre-SystemVerilog does only this and nothing more. Type systems can also be used to limit which
operations are possible to perform on values. For example, VHDL does not allow arithmetic on
arbitrary bit vectors (std_logic vector), for that the values must be converted to a signed or
unsigned type. Type systems can also group related values together, often in records or structs and
sometimes as unions. Grouping and restricting the available operations on types prevents bugs at
compile time by disallowing misinterpretation of values, and disallowing creation of invalid values.
Type systems can also be used to facilitate code re-use. Generic types and modules allow code to
be written once and reused for any compatible type, and type systems which support higher order
functions allows the use of techniques like combinators [20] to re-use code for working with streams
of data. Finally, type systems can be used to facilitate correct-by-construction interoperability
between modules, in the simplest case by the techniques already discussed to prevent incorrect
values from being created and passed between modules, but also by more advanced techniques
such as Filaments timeline types [35] which encode signal timing requirements of modules in the
type system.

As mentioned earlier, there is clear evidence that type systems prevent bugs [19, 25] but it
of course also comes with a cost. A type system that is strict about its interpretation of values
will be more verbose since it requires explicit conversions when a less strict language may have
performed implicit conversions instead. Spade takes the stance that in hardware, where the cost of
bugs is high, a powerful type system can be of great help for preventing issues. Therefore, Spade
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has a type system that is more powerful than most contemporary HDLs. In order to address the
verbosity concerns, the language uses type inference to infer most types which gives some of
the advantages of dynamic types, namely not having to state every type, while providing all the
correctness guarantees that come with static types.

Like almost all type systems it supports primitive types such as booleans, signed and unsigned
integers, and compound types such as tuples, arrays, and structs. In addition to this, it also supports
sum types* and the pattern matching that makes these ergonomic to work with. All these types can be
generic for code re-use, and unlike generic types in VHDL, the generic parameters can be other types
in addition to compile-time integers. In addition to types which control the interpretation of values,
there is also support for higher order functions to facilitate, among other things, transformation
of values wrapped in other types. For composition and encapsulation, the language supports
implementing methods on types. These methods can also be parts of traits which allows generic
units to place requirements on the types that are accepted by the generic unit. All these features
put the power of the Spade type system close to that of Rust and above most contemporary HDLs®.
There are also a few HDLs with similarly powerful type systems, e.g., Clash [3] and Bluespec [39].

In addition to these heavily software-inspired type system features, the language has some
hardware specific type features as well. First, it models ports as a collection of directional wires
which allows, for example, passing the interface ports of a memory or an AXI bus as a whole
between units. A linear type system ensures that this is done correctly and every wire gets driven
exactly once. Finally, the language includes type level arithmetic which is used, among other things,
to prevent implicit data loss due to truncation, and tracking things like fixed point numbers. These
type level integers can also be used in pipelines to build generic pipelines whose latency depends
on the number of bits in their inputs or outputs.

The rest of this section goes into more details on the Spade type system.

5.1 Sum Types and Pattern Matching

The language supports sum types inspired by languages like Rust, Haskell and ML and which in
Spade are called enum. Unlike their C or VHDL namesake, enums in Spade have data associated
with them in addition to being one of a set of variants.

A common use for sum types in hardware is to represent states in state machines, which is
exemplified in Listing 7. It contains an implementation of an addressable configuration register
with a 16-bit address and 8-bit value. The external interface of the register is defined on Line 9:
the first input, self_addr, is the address of this register, while the second input, data, is a tuple
(bool, uint<8>) which represents a stream of bytes that control the register. When the bool is
true, the byte is valid. A command consists of a sequence of three bytes, the first two containing
the address to write data to, and the third byte containing the data to write. To decode this, a Finite
State Machine (FSM) is used, and the enum type that represents the state is defined on Line 1. It can
take on one of three values: Idle, WaitAddrl and WaitData. As mentioned, enums in Spade can
have data associated with each variant, in this case WaitAddrl has the first byte of the address that
has been received and WaitData has both the first and second addresses.

The main state machine itself is defined on Lines 10-16. This makes heavy use of the match
expression and its built in pattern matching. The first branch is a catch-all for when the byte-valid
bit is not set in which case the FSM should simply retain its current state. The second branch handles
the idle state in which the next byte to arrive is the first byte of a target address. This target address
is stored in the payload of the next state, WaitAddrl. The next branch which handles the WaitAddrl

4Sometimes called tagged unions
50f course excluding the ownership system which is an abstraction around processor memory.
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1 enum State {

2 Idle,

3 WaitAddrl{addr@: uint<8>},

4 WaitData{addr0: uint<8>, addrl: uint<8>},

5%

6
7 use State as S;

8
9 entity creg(self addr: uint<16>, data: (bool, uint<8>)) -> uint<8> {
10 reg(clk) state reset(rst: S::Idle) =>

11 match (data, state) {

12 (., (false, _ )) => state

13 (S::Idle, (. , byte)) => S::WaitAddrl(byte),
14 (S::WaitAddrl(addr@), (_ , byte)) => S::WaitData(addr®, byte),
15 (S::WaitData( , ), (. , _)) == S::Idle,

16 b

17

18 reg(clk) value reset(rst: 0) =

19 match (state, data) {

20 (State::WaitData(addr@, addrl), (true, data)) => {

21 if addr@ “concat® addrl == self addr {

22 data

23 } else {

24 value

25 }

26 }

27 ~ => value

28 }s;

29 value

30 }

Listing 7. Implementation of an addressable configuration register implemented using sum types. The clock
and reset inputs have been omitted in the interest of space.

state is similar, but it also reads the addr0 payload of the current state when transitioning to the
WaitData state. Finally, the last state simply jumps back to idle when the data has been read.

The match block is the only way to access enum members, as it ensures that value has the correct
variant before accessing the underlying fields. Match blocks are not only used to access enum
variants, however. The match block here matches on a tuple consisting of the state and the input,
which in turn is another tuple. In addition, on Line 12, it is used to match on a boolean value
to prevent the state machine from progressing when the input is not valid. This also makes use
of wildcards (_) to ignore the rest of the matched value. The first branch of a match block which
matches a value is prioritized, which is why wildcards are used for the valid signal after the first
branch. Finally, the compiler ensures that patterns are exhaustive, i.e. every value matches at least
one branch. This makes refactoring easier as the compiler forces developers to address all match
blocks that are affected when new enum variants are added.

Another match block is used on Lines 18-28 to update the value of the register to the incoming
data if the current state is Waitdata and the incoming data is valid.
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12 Frans Skarman, Gustav Sornas, and Oscar Gustafsson

tag value

Idle
WaitAddrl [01] addro /7

WaitData |10 ] addre | addri |

Fig. 3. Representation of the State enum defined in Listing 7.

Using sum types and pattern matching for this application has several advantages. First, asso-
ciating the payload with individual states means that there is no way to read “invalid payload”,
the compiler ensures that the data is only accessed when valid. The compiler also ensures that all
cases are covered by the match blocks which reduces the risk of errors. The strict type system also
ensures that the second match block, which updates the value register, is correct-by-construction;
the only state in which a valid 16-bit address exists is the final state, in any other state there is no
value available for addre and addrl.

There are several potential ways to represent enums in hardware. Spade does not specify an
exact representation in order to allow optimizations down the line, but the representation that is
currently used is shown in Fig. 3. The value consists of a tag which discriminates the variants, and
the “payload” of each variant is packed from left to right. There are several avenues for optimization
here, a one-hot encoding of the tag can be beneficial for decoding but requires additional bits for
storage. In software, unused bytes of some variants is sometimes used to encode parts of the tag
which can reduce storage requirements, but results in more complex decode logic in hardware.
Field ordering can also have an impact on performance [32].

5.2 Generics

Both types and units in Spade can be generic over other types which is denoted by <T> where T is
the name of the generic parameter. This is useful for creating complex “container types” such as a
ready-valid interface where the inner type can be any other type. Generics can also be integers
denoted by <#uint N> or <#int N> which is used frequently for things like integer widths, array
sizes, or pipeline depths that depend on the type of the pipeline input or output. The implementation
of generics in the compiler is a mix C++ style templates where final type checking is only done once
all types are fully known, and true generics where type errors are caught through traits, which will
be discussed later. Where possible, full generics give early feedback while developing and prevents
unexpected issues that only occur with some combinations of types while templates allow more
complex type expressions to be evaluated non-symbolically for difficult cases such as type level
arithmetic.

5.3 The Option Type

A special case of the enums and generic types discussed so far is the Option type which has wide-
reaching utility in hardware. Intuitively, the Option type is best viewed as a (valid, data)-pair where
the language and compiler help prevent misuse of the underlying data. To motivate it, consider
the data input in the entity from Listing 7 which is also a (valid, data)-pair. In this case, the bool
field represents the validity of the uint<8> value, but this relationship between the fields is not
captured in the type system, which means that it is possible to read the invalid data if one forgets to
check the valid flag. In addition, there are other possible interpretations of a (bool, uint<8>)-tuple
which could be passed to the unit accidentally.
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1 enum Option<T> {
2 None,

3 Some{val: T}
4}

Listing 8. The definition of the Option type.

The Option type solves both of these problems and its definition in the Spade standard library is
shown in Listing 8. First, it being an enum means that it is not possible to read the contained value
without a match block, preventing invalid values from being accessed accidentally. While the bit
representation of (bool, uint<8>) and Option<uint<8>> are the same, the semantics of the Option
type are clear and enforced by the compiler, reducing the risk of passing an incorrect value to a
unit which expects data with a valid tag. Since it is defined with a generic parameter T it can wrap
any other type, and other types which build on top of valid data such as a ready/valid can re-use
the option type for correctness.

Defining a canonical representation for combined data and valid signals in the standard library
comes with additional advantages. First, it is possible for the compiler to perform optimizations
that rely on the known relationship between the data and its valid signal. One such optimization is
automated fine-grained clock gating, where switching power can be reduced by disabling registers
during clock cycles where the contained data is invalid. Another advantage is in composability, the
creg unit defined previously when rewritten to use an Option type can be connected to any source
of Option type values whether it is data coming from a serial bus like UART, a network controller,
an AXI bus, or anything else which produces a stream of validated bytes.

5.4 Methods

Almost all modern software languages include features akin to methods — functions that are
associated with a type and can be called on an instance of that type instead of as freestanding
functions. Methods are a central component of object-oriented languages such as Java and C++
but are also present and used extensively in languages based on other paradigms such as Rust,
JavaScript, and OCaml.

Methods have several advantages over pure freestanding functions, some of which are demon-
strated by Listing 9 which showcases how a stream of bytes in the CSI2 protocol can be transformed
into a stream of pixel data. Listing 9a shows the definition of two types of data to be streamed,
Listing 9b shows how a byte stream is converted to pixels using methods, and Listing 9c shows the
corresponding implementation using free-standing functions. Using methods in this case makes
the code readable from top-to-bottom which is well suited for a gradual transformation of the
streams, whereas the function-based implementation must be read inside-out and requires more
effort to find where the stream starts, and which arguments belong to which function. Another
advantage of methods is that similar methods can exist on multiple types, making refactoring
to change between different underlying types much easier. It is also worth noting that even the
function based approach here is significantly more compact than the equivalent code would be in
Verilog or VHDL where the output of one module or entity cannot be passed directly to another,
instead requiring definition of intermediate signals which pass the values between units.

The inst keyword differentiates the instantiation of function-methods from entity-methods.
This warns readers of the code that while the code looks like a pure transformation, there is stateful
logic behind some of the methods. In this case, that stateful logic looks at things like packet headers
in the stream of bytes and transforms it into a sparse stream of packets.
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use lib::packet::bytes to packets;
use lib::packet::to_pixel_ stream;
use lib::packet::filter header;
use lib::packet::long packets;

struct ByteStream {
inner: Option<uint<8>>

}

struct PixelDataStream {

let pi = inst i
rgb: Option<uint<gss et pixels = inst to pixel stream(

} clk,
filter header(
(a) Definition of two stream types. long_packets(
inst bytes to packets(
let pixels = byte stream EI:’ "
.inst into_packets(clk) yte_stream
.long_packets() ) )
.filter header(0x2A) !
Ox2A

.inst into_pixels(
clk, byte stream
)

(b) Transformation from ByteStream to (c) Transformation from Bytestream to

PixelDataStream using methods. PixelDataStream using free-standing func-

tions.

Listing 9. Example of using free-standing functions and methods.

5.5 Traits and Requirements

Generic types and units must sometimes enforce requirements on the types they are generic over.
This is accomplished using traits and where clauses. For example, one can write a generic unit
which computes the sum of a stream of values that not only works for a specific type, but any type
which can be “added”. An example of this is shown in Listing 10. On Line 2 a trait called Addable
is defined. In order to satisfy the Addable trait, a type must implement every method in the trait
body, in this case just add. The trait is implemented for integers of any size N on Lines 7-11. Finally,
an entity called sum is defined starting on Line 15. This entity is generic over a type T which, via
the where clause on Line 16, is restricted to only be a type which implements the Addable trait.

5.6 Higher Order Circuits

Functional programming has been shown on several occasions to be a good fit for hardware
design [20, 3], and a central enabling feature of functional programming is being able to pass
functions as values, which Spade also supports. Dynamic dispatch is of course difficult or impossible
to do without overhead in hardware, so only static dispatch is supported. Units which accept higher
order circuits are generic over an Fn, or Entity, or Pipeline trait which has a call method that
receives the relevant arguments and produces the corresponding output.

Higher order circuits are especially useful on containers such as arrays and option types as
they can be used to transform the contents of the container in a concise and correct manner. An
example of this is shown in Listing 11 which implements an FIR filter on a stream of samples
represented by an Option<Sample> type. The sliding window function retains the previous 16 values
and produces a new value of type Option<[Sample; 16]> for every input sample. The outer map
function transforms this window of values into an output sample by pairing the values (zip) with
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1 // Definition of a trait for types whose values can be added

2 trait Addable {

3 fn add(self, other: Self) -> Self;

4}

5

6 // Implementation of the trait for signed integers of any width
7 impl<#uint N> Addable for int<N> {

8 fn add(self, other: int<N>) -> int<N> {

9 trunc(self + other)

10 }

11 }

12

13 // An entity which can sum values of any type which implements
14 // the Addable trait.

15 entity sum<T>(clk: clock, rst: bool, reset value: T, in: T) -> T
16  where T: Addable

17 {

18 reg(clk) sum reset(rst: reset value) = sum.add(in);

19 sum

20 }

Listing 10. Definition, implementation, and use of an Addab'le trait that indicates that values of the types
which implement the trait can be added.

1 samples

2 .inst sliding window: :<16>()
3 .map(fn (window) {

4 window

5 .zip(coefficients)
6 .map(fn (x, c¢) { x * ¢ })
7 .sum()

8

})

Listing 11. FIR filter operating on a stream of samples encapsulated in Option<T>.

the corresponding coefficients producing a [ (Sample, Coefficient); 16] array, multiplying each
pair, and finally summing the products.

5.7 Linear Types and Ports

So far, most of the features described have largely focused around describing computations; pipelines
and combinators describe sequences of computation, and enums and match statements allow describ-
ing state machines. However, of equal importance when designing hardware is the interconnection
between different compute modules as well as the internal and external memories they need to
perform their tasks. The description of interconnections using the language described so far is
more awkward than traditional HDLs as units take a set of inputs and produce a set of outputs,
rather than operating on a set input and output wires. To exemplify this problem, consider the
following definition of a compute unit which requires access to a memory for its computation:

entity compute(clk: clock, mem in: MemData) -> (Out, uint<16>)
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struct port MemReadPort<T> {
addr: &inv uint<l16>
value: &T

}

o Ul A WN =

entity compute(clk: clock, mem: MemReadPort<MemData>) -> Out {...}

Listing 12. A compute unit which accepts a single memory port

1 entity dp _mem<T>(clk: clock) -> (MemPort<T>, MemPort<T>) {...}
2

3 entity top() {

4 let (pl, p2) = inst dp mem();

5

6 (inst compute(pl), inst compute(pl))
7}

Listing 13. Definition of a dual port memory, along with a top module that instantiates the memory and two
compute units. The first memory port (pl) is accidentally passed to both compute units.

Its output value is a tuple of the output of the module (Out), and the address it reads from. It
has a single input, mem_in, which is the data that was read from memory. This has a number of
issues: first, the address is now mixed in with the computed result, and second, there is no logical
connection between the address and the returned value, a problem which is compounded if the
compute unit needs access to more than one memory or when the unit needs both read and write
access. Finally, if the compute unit is a pipeline, the read address and the memory output value will
be pipelined, which is generally not desired.

In order to work around all these issues Spade includes a family of types called port. The simplest
ports are the wire (&T) and inverted wire (&inv T). A wire is simply a value which is not pipelined
between pipeline stages, while an inverted wire reverses the usual direction of data flow. A unit
which accepts an inverted wire as an input can set the value of that wire using a set statement,
whereas a unit which returns an inverted wire can read its value when set by another unit. Using
these, the compute unit can be rewritten as

entity compute(clk: clock, addr: &inv uint<16>, mem in: &MemData) -> Out

which resolves the problem of memory addresses being mixed with the output value, and since wires
are not pipelined, will not cause issues with additional delay introduced by pipelines. However,
there is still no clear grouping of all the wires belonging to a memory, a problem which may seem
small here, but is made larger when dealing with complex buses such as AXI which has more than
10 related wires per bus. For this reason, Spade supports compound ports either as tuples of wires,
(&inv uint<16>, &MemData), or as structs as shown in Listing 12.

An important property of ports that must be upheld is that inverted wires are written to exactly
once. If no writers are connected, then the circuit will have undefined values which leads to
bugs. Similarly, if multiple drivers are connected to the same wire, the value on the wire becomes
undefined. Even in a simple case, such as the one shown in Listing 13, it is easy to accidentally
violate this requirement. Here, the user instantiated a dual port memory on Line 4, intending to
hand out the two ports to separate compute units. However, when instantiating the compute units
on Line 6, a mistake was made and p1l was passed to both compute units. This means that the
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struct port MemPort<T> { let mem: MemPort = memory();
addr: inv& uint<16>, let addr = mem.addr;
value: inv& T set addr = value;

} consume(mem) ;

Listing 14. Struct definition and example code for Fig. 4

let addr = mem.addr;

e1, mem —>-(‘p

s

ez, addr —» a {w;

set addr = value; consume (mem) ;

e1, mem —>p
ez, addr —P@{ w

Fig. 4. The linear type checking tree when run on Listing 14

address line on p1 has multiple drivers while p2 has none. Spade uses linear types [58] to ensure
at compile time that all inverted wires are consumed exactly once. An inverted wire is consumed
either when it is given a value, or when it is passed along to another unit who then receives the
responsibility of assigning a value. Reading from an inverted wire does not consume it.

Linear type checking happens after normal type checking, meaning that the compiler knows
which resources are of linear type and must be checked.

To exemplify the linear type checking algorithm, Fig. 4 shows it in action as it processes each
line in Listing 14. In the figure, p represents the whole MemoryPort struct, a represents the address
field, and w the value field. The e, variables represent anonymous names given to sub-expressions
before they are bound to variables. A dashed node represents it not being consumed, a solid node
means it is consumed, and a crossed node indicates double consumption.

For each expression which produces a resource of linear type, a tree is created where leaf nodes
represent primitive linear types, and non-leaves represent compound linear types such as tuples
or structs. Any statement that aliases a resource, such as a let-binding of an expression, or field
access on a struct, creates a reference from the alias to the corresponding tree and node.

When a resource is consumed for example by being passed to another module or being set, the
nodes corresponding to the consumed object are marked as consumed. If the node or its child nodes
are already marked as consumed, the resource is used more than once and an error is thrown.

This ensures that nodes are not used more than once, but does not guarantee that they are used
exactly once. Therefore, at the end of the process, a final pass goes over all the trees to ensure that
each node is consumed. If the traversal finds an unconsumed leaf, it represents a resource of linear
type which was not set, and an error is reported.

The use of substructural type systems such as linear types to model hardware is not entirely
new. In particular, Dahlia [38] uses affine types to model memory ports and users in a high level
synthesis context.
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1 struct port Rv<T> {

2 data: &Option<T=,

3 ready: inv &bool,

4}

5

6 impl<T1l> Rv<T1l> {

7 fn map<T2, F>(self, f: F) -> Rv<T2>
8 where F: Fn((T1), T2)

9 {
10 Rv$(
11 ready: self.ready,
12 data: match self.data {
13 Some(inner) => Some(f.call((inner, ))),
14 None => None
15 1
16 )
17 }
18 }

Listing 15. Definition of a ready-valid interface along with an implementation of a map combinator for

transforming the inner data.

5.8 Latency-Insensitive Combinators

ShakeFlow [20] is a functional HDL centered around combinators for describing latency insensitive
interfaces. The authors show that this can be used to describe realistic circuits without performance
or resource overhead, and with significant reduction in lines of code. However, they also note that
existing HDLs are not able to support latency insensitive combinators as that requires combinators
that operate on bidirectional data types where data and valid signals flow “forward” and ready
signals flow “backward”. ShakeFlow does support this, but does not support other abstraction
making its use as a general purpose HDL difficult.

The type system features discussed so far are sufficient to reimplement ShakeFlow inside Spade
which enables taking advantage of the benefits of latency-insensitive combinators and mixing them
with other abstractions such as pure RTL or pipelines. As an example of this, Listing 15 contains
the definition of a ready-valid (Rv) type which corresponds to the VrCh type in ShakeFlow. The type
has two fields: the data which is an Option type representing the valid signal and the validated
payload, and the ready field which is the ready signal that is propagated “backwards”. The impl
block defines a map function, which transforms the inner data according to a function F while
retaining validity and propagating the ready signal.

6 Tooling

As discussed in Section 2, a big reason that modern software languages lead to a productivity boost
is through their tooling. Therefore, Spade also includes several tools including a build tool, editor
integration and a custom built waveform viewer.

6.1 Compiler Errors

The primary method for interacting with a language is through the compiler, which broadly has
two jobs. First, it must of course transform the input language to its output, a process which is
largely transparent to the user, and second, it must catch and report any errors that arise. The
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error: Cannot apply “#[no_mangle(all)]"
— error test.spade:2:32

entity external(clk: clock) -> uint<8> {
AAAAAAS Qutput types are always mangled

Consider replacing the output with an inverted input

...................
|||||||||||||||||||||||||||||

...and “set ing the inverted input to the return value

set out = 5;

|
|
|
|
|
2 | entity external(clk: clock, out: inv &uint<8>) -> uint<8> {
|
|
|
| FHtHH

Listing 16. Example of a Spade error message.

Spade compiler, like many modern compilers, is built to not only report errors, but to do so in a
way that accurately explains what the problem is, and where possible, guides the user to a solution
for the problem. This includes providing code suggestions where possible. Listing 3 showed an
example of an error message used to indicate an error in a pipeline, and Listing 16 shows an
error which makes heavy use of suggestions to guide the user to a solution. Code suggestions are
primarily useful to developers who are new to the language, as well as developers who are new to
hardware. With editor integration, they can also serve as the basis for “code actions”, allowing the
user to automatically apply suggestions in their editor. A survey of questions asked on question
and answers forums found that questions about error messages are over-represented in HDLs
compared to general purpose programming languages, indicating a real-world need for improved
error messages [61].

6.2 Swim - The Spade Build Tool

The most important tool apart from the compiler is the build tool which orchestrates the building of
Spade projects. A project consists of a number of Spade files, along with a project configuration file
written in TOML, an example of which is shown in Listing 17a. This configuration specifies among
other things the project dependencies, the backend tool to use, and which raw Verilog files should
be included in the build. Swim then manages the namespacing of project files, downloading and
versioning of dependencies, and running the backend tools allowing users to build a project from
scratch and upload it to an FPGA board with just a single swim upload command.

The namespacing and modules system in Spade ensures that there are no name collisions
between any dependencies. As an example, consider the project configuration in Listing 17a and
project structure in Listing 17b. Since the name of the project is example everything defined in
the project will be included in the example namespace. In that namespace, each file in src will
be included in a sub-namespace, for example, a function func defined in display.spade will be
reachable as example: :display: : func. Similarly, subdirectories in src are put in an additional
namespace, so example: :stubs::ecp5::stub refers to stub defined in src/stubs/ecp5.spade.
Finally, dependencies are included in separate namespaces at the root so for example, hdmi_driver
defined in a lib. spade file in the hdmi dependency will be reachable via hdmi: :lib: :hdmi driver.
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name = "example" i example project
[libraries] [ mmsrc
hdmi = { | | mmstubs

git = "https://gitlab.com/TheZog2/hdmi" | | I ecp5.spade
} | | ' ecp5.sv
[synthesis] | | display.spade
command = "synth ecp5" | ' main.spade
top = "example::main::main" [ mm test
extra verilogs = [ "src/stubs/ecp5.sv" 1] | I tests.py
[pnr] | & visualizer.cpp

L~ swim.toml

(a) Swim project configuration.

(b) Swim project structure.

Listing 17. Example of a Swim project.

#top = lib::add mul

async def check out(dut, i, 0):
s = SpadeExt(dut)
clk = # Cocotb clock setup
s.i.op=1
await FallingEdge(clk)
s.o.out.assert _eq(o)

@cocotb. test()
async def mult(dut):
await check out(
"Op::Mul(5, 6)",
"Some(30)"

@cocotb. test()
async def add(dut):
await check out(
"Op::Add(5, 6)",
"Some(11)"

(a) Cocotb test bench.

// top = main::main
#define TOP main
#include <verilator util.hpp>

TEST CASE(smoke test, {
s.i.op = "Op::Mul(1234, 6789)"
TICK
s.o0.assert_eq("Some(8377626)")

1)

TEST CASE(smoke test, { ... }
TEST CASE(random_inputs, { ... }
(b) Verilator test bench.

FAIL  test/tests.py 1/2 failed

L mult FAILED [path to vcdl.vcd]
L test ok [path to vcd.vcd]

ok test/visualizer.cpp 0/3 failed
L smoke test ok [cpp vcdl.vcd]

L long running ok [cpp vcd2.vcd]

|_ random_inputs ok [cpp vcd3.vcd]

(c) Test result report.

Listing 18. Example of a test setup with tests written in both cocotb and Verilator.

6.3 Testing

Swim supports test benches for Spade projects using cocotb [14] or Verilator [49], depending on
the user’s preference. Swim automatically discovers files containing tests in the test directory,
and further discovers individual test cases in each file. These tests are then executed in parallel
leading to significantly faster test running than the Verilator and cocotb default of running each

test sequentially.
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Since Spade puts heavy emphasis on the type system, it is rare for the user to know the bit
patterns of most values, they only know them as the Spade representation. Therefore, the language
includes wrappers around cocotb and Verilator values which allows writing Spade expressions as
strings which get translated to bit patterns that in turn are fed to the design under test. Listing 18
shows an example of how the tests for the project in Listing 17 can be written. The file tests.py
shown in Listing 18a uses cocotb to define two test cases, mult and add, which are using the helper
function check out defined on Lines 3-8 to supply inputs and check the outputs one clock cycle
later. Similarly, Listing 18b contains a Verilator test bench which defines three test cases using
the TEST_CASE macro which is bundled with Swim. Finally, Listing 18c shows the resulting output
of running swim test which lists the success or failure of each individual test case after running
them concurrently.

6.4 Waveform Analysis Tools

As mentioned in the previous section, it is rare for users to know the bit patterns of most values,
which makes debugging failures in a traditional waveform viewer difficult. To remedy this, a
new waveform viewer — Surfer — was created specifically for Spade [48]. The key feature of this
waveform viewer from the perspective of Spade is that it is extensible to support translation from
bit vectors into hierarchical values. This gives the user a human-readable representation of the
value, and allows expansion of things like structs into individual fields.

While Surfer was originally created for Spade, it has evolved into a standalone project with
significant community adoption, including integration with other modern HDLs, for example Chisel
via the Tywaves project [33].

For higher level analysis, Spade is also integrated with the Waveform Analysis Language
(WAL) [27] as described in [47].

6.5 Surrounding infrastructure

For IDE functionality, the Language Server Protocol (LSP) [34] serves as a middle-man between
text editors and compilers in order to avoid each text editor having to build support for every
language. Spade has a work-in-progress LSP server, which supports inline diagnostics, hover hints,
as well as navigation to references and definitions of variables and units. For syntax highlighting,
there is a tree-sitter grammar available for editors which support it, primarily Vim and Helix.
The language also has a few community-contributed tools including a documentation renderer, a
work-in-progress auto-formatter, and editor plugins for several editors.

Finally, to simplify onboarding for new users, there is an online playground® which uses Web-
Assembly to run the compiler and simulation directly in the user’s browser without requiring any
installation.

7 Implementation

The Spade compiler is a standalone compiler written in Rust. It is released as open source’ under the
EUPL-1.2 license. The rest of the tooling around the language are licensed similarly, and the standard
library is permissively licensed in order to allow the language itself to be used in most projects. Like
most modern compilers, it is a multi-stage compiler with several intermediate representations that
gradually lower the input to the output. The compiler currently emits a small subset of Verilog, since
Verilog or VHDL are the only formats that can be reliably consumed by backend tools. However,

Shttps://play.spade-lang.org
"https://gitlab.com/spade-lang/spade/
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the compiler is designed to be backend agnostic and only requires changing the code generation to
target other backends such as CIRCT [13], Calyx [36], or RTLIL [45].

8 Related Work

There is no shortage of new HDLs being developed; the authors are aware of over 50 languages at
various stages of completion and use®. Naturally, there is not enough space to summarize all of
them here, instead, we will highlight some languages of particular interest. For a more in-depth
discussion on the HDL ecosystem, see Chapter 3 of [46].

Many modern HDLs, and most of the ones that have gained some ground in industry, are Hard-
ware Construction Languages (HCLs) — RTL-level languages embedded in a software programming
language [23]. In HCLs, developers describe hardware by using libraries in the host language to
construct synthesizeable hardware components. Having the full power of a software language
means that these languages come with extremely powerful metaprogramming facilities. A common
use case for this is processor generators like VexRiscv [41] and SoC generators like RocketChip [2].
These generators can be used to generate efficient hardware that can be highly tailored to a specific
use case simply by changing parameters. Perhaps the two most well known language in this
category are Chisel [5] and SpinalHDL [52] which are both embedded in Scala. Another well-used
languages in this category is Amaranth [1] which is embedded in Python and is inspired by Migen.

HCLs and other embedded languages provide very powerful meta-programming facilities, but this
means that many abstractions they use are somewhat ad-hoc, potentially limiting interoperability
between libraries. They also tend to have somewhat weak type systems at the hardware level,
typically only supporting primitives and records at the hardware level even if the host language
has a powerful type system. In addition, the embedded language can often feel like a “second class
citizen” since the standard keywords are reserved for the host language, and error messages end
up being runtime errors in the host language. In contrast, Spade being a standalone language does
not benefit from the ability to use a powerful software language for metaprogramming. Instead,
metaprogramming is done primarily with the type system, for example using higher order functions
to configure functionality. While this limits the possibility of building very powerful generators
such as VexRiscV and RocketChip in Spade, it makes the experience of building more conventional
hardware designs better.

The pipelining feature in Spade is very similar to that of TLVerilog [44] and ROHD [28], though
neither of those handle nested pipelines out of the box. Broadly, pipelining systems give some
ability to explicitly reason about timing of signals in the language. Filament [35] and its Parafill
extension [37] provide even more guarantees about timing with a timeline type system that allows
reasoning not only about latency, but also initiation intervals, ensuring correct-by-construction
composition of latency sensitive modules with resource sharing. However, because of these strict
guarantees, working with designs that are not latency sensitive or otherwise do not fit the Filament
model becomes difficult. In addition, the Filament language is primarily built to demonstrate the
timeline types which means it is lacking other language features to make it broadly usable. The
Spade pipelining system in contrast provide far fewer guarantees but provides a subset of the
guarantees that Filament does in a langauge that is usable today. SUS [56] uses a related technique
called latency counting which tracks the latency of signals individually instead of whole pipelines
at once. As far as the authors are aware, SUS was built in part after seeing the pipelining system in
Spade, and wanting to address some of its perceived shortcomings.

The type system in Spade is more powerful than many contemporary HDLs, but a few other
languages have similarly or more powerful type systems. Clash [3] has the full power of the Haskell

8https://gitlab.com/TheZoq2/list_of hdls/
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type system available in hardware, and Bluespec [39] has a very similar type system to that of
Haskell. RHDL [7, 6] and PyGears [57] include support for sum types but not many of the other
functional programming-inspired type system features which Spade supports. In addition, many
HCLs have powerful type systems available in the host language, but do not expose these at the
hardware level, making some features, particularly pattern matching, difficult or impossible to
implement.

The goal of Spade is to build abstractions on top of RTL, giving designers full control over the
generated hardware when necessary. Many of the languages discussed so far fall in this category, but
some abandon the RTL abstraction and operate purely at higher levels of abstraction. Bluespec [39]
is a prominent example which uses actions and rules as the base building block. This model has
been reused by several other HDLs including Kami [12], Kéika [10], and cmt2 [60, 59]. Other
languages with non-RTL abstraction include DFiant HDL [40], Silice [30] and PipelineC [24]. As
the abstraction level is raised even further, languages tend to not fall in the HDL category, instead
being Accelerator Design Languages (ADLs) or just high-level synthesis. Many of these languages
are surveyed in [50].

In summary, many of the key features Spade provides exist in some way in other languages,
whether it be software languages or modern HDLs. The key contribution of Spade is to take
these existing ideas and adapting them to fit in a package that works as a productive language
for developers who want a standlone language with an RTL level description at its core but with
powerful abstractions on top. In addition, the type system in particular is powerful enough to allow
developers to build further abstractions on top of the base language. As an example, in particular,
the type system is powerful enough to reimplement ShakeFlow [20] as discussed in Section 5.8.

9 Target Audience, Scope, and Goals

Finally, having discussed all the details of the language, it is worth taking a step to discuss the
overarching goals the target audience of Spade.

The programming model of Spade is quite different from that of Verilog and VHDL, which
are event-based imperative languages. We argue that the RTL level description with immutable
variables in Spade is a much more appropriate fit for describing synthesizeable hardware as it has a
much more obvious mapping to hardware. An obvious consequense of this is decision that Spade is
limited to writing synthesizeable hardware: simulation or higher level modelling are not possible.
However, the emergence of projects like Cocotb [14] and Verilator [49] shows that even when it is
possible to do verification in the synthesis language, many developers prefer to use a convenitional
software language for verification.

In addition, since simulation and synthesis are vastly different activities, designing a language
that does both requires sacrifices in both areas. In Verilog and VHDL, this manifests in many ways,
but an obvious consequence is that neither langauge specifies which parts of the language are
synthesizeable, nor how they should be synthesized. Instead, this is left to vendors which results in
obvious problems when moving code between vendors and tools. In fact, even in between tools from
the same vendor, the supported subset of synthesizeable Verilog differ [54]. While these problems
are certainly possible to work around, doing so for experienced developers requires concious effort.
For students, the situation is worse. In our experience, students, especially those coming from a
software background struggle with VHDL because the mapping between VHDL and hardware is
often unclear and because it is far too easy to write complex logic that works in simulation but
fails to produce good results in synthesis. In addition, the feedback cycle between design entry
and synthesis is often long, and ends with unhelpful warnings buried in the logs of synthesis tools.
Switching away from VHDL or Verilog in teaching has been shown to significantly improve student
satisfaction and course results [42] and student project outcomes [8].
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The non-synthesizeable parts of Verilog and VHDL are sometimes also used for initial high level
modelling which is then gradually refined and lowered to synthesizeable code. This possibility is of
course lost in a language with only synthesizeable constructs, but we argue that this is a reasonable
tradeoff in order to make a language that is more well suited for describing synthesizeable hardware.
In addition, we argue that the high-level features that the language adds on top of the base RTL
description reduce the necessity of doing non-synthesizeable high level design in the RTL language.

It is also worth noting that the Spade programming model is limited to synchronous designs. As
the vast majority of digital designs today are synchronous [51], this is not particularly limiting. In
addition, there are dedicated HDLs for asynchronous logic, for example, Loom [11].

The very long term goal of Spade is to be a serious contender as a replacement for Verilog
and VHDL, though the road there is long. As a software-inspired HDL, Spade has the potential
to address the needs both of current hardware developers and of software developers who are
interested in building hardware. Hardware developers benefit from the improved correctness and
productivity that the language provides, while software developers benefit from a language that is
closer to what they are used to in modern programming languages. In addition, with abstractions
that clearly separate combinational logic, sequential logic, and memories, includes abstractions for
common hardware constructs like pipelines, and gives a quick feedback cycle thanks to helpful
error messages, it is likely that software developers will find it easier to build up the intuition
required for good hardware design. Similar effects have hinted at for example when switching from
VHDL to Chisel [42] in teaching. On the other hand, there is a risk of the language failing to address
the needs of either audience, with the higher level concepts and abstractions being unapproachable
to hardware developers who are used to working at a lower level, and with software developers
having difficulties adapting to the differences between hardware and software. This is best mitigated
by well written documentation and teaching resources that address both audiences by introducing
hardware concepts to software developers, and software concepts to hardware developers. Spade
has some documentation that follows these ideas already at https://docs.spade-lang.org/, but this is
an area where further work is required before the language can be widely adopted.

There is a small but healthy community of people interested in the language, with around 300
users in the official chat group’ at the time of writing. The community consists of both hardware
developers and software developers, though our impression is that it is slighyly skewed towards
software developers interested in hardware development who want a language that is closer to
what they are used to from software.

10 Future Work

Programming languages are rarely truly “done”, there are always new features and improvements
that can be made. Spade is of course no exception and has plenty of big and small improvements
that can be made. Finite state machines are ubiquitous in hardware design, and while the enums
and match expressions in Spade make it easier to express FSMs than in Verilog and VHDL, it
is still a manual and possibly error-prone process that often involves manual translation from a
higher level description. Some HDLs address this already: YieldFSM [32] and CoHDL [16] do so by
drawing inspiration from “generators” in software, while other languages, such as RubyRTL [29],
still requires developers to be explicit about states but provide a a more structured means of
describing state transitions. Adopting some of these ideas in Spade will further improve developer
productivity.

Crossing clock domains is a potential source of errors that are often hard to debug because they
only trigger issues spurriously, which makes them a prime candidate for abstraction. Native clock

“https://discord.gg/gxNGKsFPxf
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domains also allows propagating enable signals for pipelines, making them far more powerful and
addressing some shortcomings with the current stall system, which is why it is a prime candidate
for including support for them in Spade. Several existing HDLs support clock domains including
Chisel [5], SpinalHDL [52], and Clash [4].

11 Conclusion

Spade is a standalone HDL which aims to make hardware development more productive through
hardware specific abstractions such as pipelining and ports. The language has a powerful type
system with similar power to that of Haskell and Rust. The abstractions and type system allow
easier and safer composition of modules, which in turn enables easier code re-use. Unlike many
contemporary HDLs, Spade is a standalone language, and the abstractions it includes are built on
top of RTL, rather than replacing it. This ensures that the user is in control over important details
where necessary, but can reason at a higher level of abstraction when convenient. For a language
to be productive it not only needs good language design but also good tooling. Spade comes with a
compiler that emits high quality error messages, a build system which manages dependencies to
enable easy re-use of high quality libraries, editor integration through the language server protocol
and tree-sitter, and a purpose built waveform viewer.
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