
Abstraction in the Spade Hardware Description Language
Frans Skarman

Linköping University
Sweden

frans.skarman@liu.se

Oscar Gustafsson
Linköping University

Sweden
oscar.gustafsson@liu.se

ABSTRACT
Spade is anHDL that enhances the productivity of HDL designers by
adding useful abstractions for hardware design. These abstractions
are zero- or low-cost, meaning that the designer still has full control
over what hardware gets generated.

1 INTRODUCTION
Spade1 is an open source HDL which aims to be more productive
than traditional HDLs without sacrificing the low-level control
usually provided by HDLs. A primary way to achieve this is via
abstractions for common hardware constructs. Such abstractions
make design intent clearer, which in turn allows the compiler to
help find and report potential issues with the design. They also
make code re-use easier, by encoding more of the properties of the
design in the language. The focus of this paper is on the abstractions
built into the Spade language, for a more thorough introduction
to the syntax and semantics the reader is referred to a previous
paper[10]. For now, it is enough to know that Spade describes the
behavior of a circuit in a cycle-to-cycle manner, and that the basic
building block of a Spade design is a unit, which corresponds to a
module in Verilog or entity in VHDL. Units can be functions which
are purely combinatorial, entities which allow sequential logic, and
pipelines which are discussed in detail in the next section. A lot
of the syntax of the language is inspired by the Rust language,
meaning that those who are familiar with it should be comfortable
with the syntax of Spade.

Unlike most HDLs, which are often imperative, Spade is an ex-
pression based language, with immutable variables. Additionally,
while many modern HDLs [1, 3, 5, 6, 9, 11], are embedded DSLs in
a software language, Spade is a standalone language built from the
ground up for hardware description.

The rest of the paper focuses on some of the abstractions which
Spade provides to enable more productive hardware design.

2 PIPELINES
Pipelines are a common construct in hardware designs, but tradi-
tional HDLs lack structured methods for describing and reasoning
about them. Spade on the other hand has language-level support
for describing pipelines. The user describes which computations
are performed in each stage, and the compiler manages the inser-
tion of registers between stages. Listing 1 shows an example of the
pipeline construct in use.

Each pipeline has a depth as part of its public interface, in this
case 4, which must be specified when instantiating the pipeline, as
is done in the instantiation of subpipe on line 4. This allows the
compiler to notify designers if the timing of a pipeline has changed,
potentially invalidating assumptions made during instantiation.

1https://spade-lang.org, https://gitlab.com/spade-lang/spade/

Listing 1: Example of the pipeline construct in Spade.
1 pipeline (4) X(clk: clock , a: int <32>, b: int <32>)

2 -> int <33> {

3 'initial

4 let x = inst (3) subpipe(clk , a);

5 let product = a * b;

6 reg * 3;

7 let sum = x + f(a, product);

8 reg;
9 sum + stage(initial).a
10 }

Additionally, when instantiating pipelines inside other pipelines,
the compiler ensures that values are not read before they are ready.

The reg statement separates stages of the pipeline. Whenever
the compiler encounters this statement, it inserts registers for all
variables declared above it, and aliases the name of those variables to
the corresponding register. This makes retiming and re-pipelining
the design significantly easier, as one can add, move, or remove reg
statements and computations without changing any references.

Finally, values in previous or future stages can be referenced
by relative index or by stage name in order to create feedback or
bypass pipeline stages, as shown on line 9.

3 TYPES
Spade is a statically typed language with type inference, which
allows the user to omit the type of most values in unit bodies. The
language contains compound types such as structs, tuples, and
arrays. In addition, it contains “sum types” in the form of enums.
These allow the programmer to reason about values which take on
one of several distinct types. Pattern matching is a first class feature
of the language, enabling convenient use of the enum values.

The type system also prevents accidental overflow by extending
the result of arithmetic to the appropriate bit widths, and requiring
explicit truncation to add or discard bits. Using type inference, this
extension or truncation is generally non-intrusive as the compiler
can infer the desired bit width.

Simply using the bit widths of intermediate calculations results
in a pessimistic bit width, however. It is therefore of interest to
explore inferring the widths of values based on the range of the
values they represent, rather than directly from the bit widths.

In order to facilitate code re-use, the type system makes use of
generics, which allows code to be written to accept any type that
satisfies some constraints. These constraints are modeled as traits
which, like their rust namesake, specify what functionality must be
implemented for the type in order to satisfy the trait. For example,
a type representing values which can be added together, such as
a fixed-point or a complex number, can implement an Add trait. A
unit can then be generic over any type which implements the Add
trait, enabling its re-use with any such type. An example is shown

https://spade-lang.org
https://gitlab.com/spade-lang/spade/


Frans Skarman and Oscar Gustafsson

Listing 2: Generic accumulator with an implementation for
complex numbers
trait Add <Rhs > {

type Output;

fn add(self , rhs: Rhs) -> Output;

}

entity accumulate <T, O>(clk: clock , new: T) -> O

where T: Add , O: T:: Output {

reg(clk) x = x + new;

x

}

impl <#N> Add <Complex <N>> for Complex <N> {

type Output = Complex <N+1>;

fn add(self , rhs: Complex <N>) -> Complex <N+1> {

Complex(self.r + rhs.r, self.i + rhs.i)

}

}

in Listing 2 where an accumulator which supports any addable type
is described, and the Add trait is implemented for a Complex struct.

It is worth noting that at the time of writing, support for generics
in the compiler is implemented, but the trait system is not. However,
the design is similar enough to the existing rust trait system that
there should be no issues blocking the implementation.

As Spade makes heavy use of integers in generics, for example to
track the size of values, checking constraints on integers becomes a
necessity. However, type checking arbitrary constraints on integers
for generics is difficult. For that reason, Spade currently falls back
on template-like type checking for units which are generic over
integers. Final type checking of such units happens during instanti-
ation when all concrete types are known, rather than during type
checking of the generic unit.

4 LINEAR TYPES AND PORTS
Apart from types which represent values to be computed on, Spade
also contains ports. Ports consist of immutable and mutable wires
which can be read from or written to inside units. The main use for
these types is for interaction between units where the interaction
is more complex than one unit passing its output to another unit’s
input. A good example of this is a compute-unit interacting with
a memory, where it produces an address and receives data at a
later time. Ports allow such input and output signals to be grouped
together, and prevents them from being delayed in pipelines.

Units with control ports, such as memories or buses, return
values of port type which in turn can be passed to modules which
use them, such as accelerators or processors. The controlling units
then set the control signals, and read the results from the port.

Spade uses linear types to ensure mutable wires are driven ex-
actly once. This prevents bugs caused by signals with missing or
multiple drivers.

5 FUTUREWORK
Spade is currently usable for building non-generic designs2, but
work remains to make it useful generally. A big part of this is
finalizing the generic type system as discussed in Section 3, though
further additions will also help.

2Some example projects are listed at https://spade-lang.org/showcase

Compile time code generation is a useful feature of any lan-
guage, especially HDLs. Several approaches for this exist. Verilog
and VHDL have generate-statements, Silice [7] uses embedded Lua
to generate code, hardware construction languages like Chisel use
their native language for code generation, and Clash [3] uses re-
cursion and iteration functions such as map, filter and reduce. As
Spade has no host language, the hardware construction language
approach is impossible. Generate-like statements are an option,
as is embedding another language such as Lua as a preprocessor.
However, as Spade makes heavy use of types, the expansion should
preferably be done after type inference, and generate code with
valid types. For this reason, the Clash approach of using recursion
and dedicated iteration functions may be preferable, though it is
harder to use for those more comfortable with traditional iteration.
In addition, a lot of languages have a macro feature which expands
things earlier in the compilation process. This is also desirable
in Spade, and here, more options such as embedded Lua, or Rust
inspired macros are possible.

Pipelines currently consume and produce one value per clock
cycle, and the time between input and output is the same for all
inputs and outputs. Adopting timeline types introduced by Fila-
ment [2] may improve the expressiveness of pipelines in addition to
allowing more structured reasoning about signal timing and hard-
ware resource sharing. Another potential extension to the pipeline
system is native support for more complex pipelines which support
stalling when execution is blocked, when inputs are unavailable, or
when there is back-pressure from downstream pipelines.

Clock- and reset-domain handling is another area where im-
provements are possible. Currently, it is left as an exercise to the
user, but there is a lot of room for the compiler and language to pro-
vide assistance. Like types, it is desirable for the domain of signals
and registers to be inferred when possible, e.g. in a unit with only
one domain. Whenmore domains are involved, the language should
require explicit annotation of domains, and the compiler should
produce an error when domains are accidentally mixed. Several
modern HDLs have features like this, so the main challenge here is
finding a design that works with the rest of the language. Taking
inspiration from Rust again, the syntax for lifetimes in Rust can
potentially be adapted to domains in Spade.

Finally, the compiler currently emits Verilog code which is fed
into simulators and synthesis tools, but it is structured to be re-
targetable to other intermediate languages or representations. Inte-
gration of the compiler with amodern hardware IR such as Calyx [8]
or CIRCT [4] will enable the use of their included optimization
passes and backends.

6 CONCLUSIONS
Spade is a standalone HDL which uses zero- and low-cost abstrac-
tions to simplify hardware description. These abstractions include
a system for reasoning about pipelines, a static type system for less
error-prone code where more assumptions about the structure of
data can be encoded, and linear types for ports between units. Fu-
ture extensions of the language include a trait system for enabling
generic re-usable code, macro and code generation systems, as well
as clock-domain inference and checking.

https://spade-lang.org/showcase


Abstraction in the Spade Hardware Description Language

REFERENCES
[1] Amaranth contributors. 2022. Amaranth HDL. https://github.com/amaranth-

lang/amaranth.
[2] Anonymous. 2023. Modular hardware design with timeline types. Unpublished

(2023).
[3] C.P.R. Baaij. 2015. Digital circuits in C_aSH. PhD. Thesis. University of Twente.

https://doi.org/10.3990/1.9789036538039
[4] CIRCT Project. 2022. CIRCT. https://circt.llvm.org/.
[5] Julian Kemmerer. 2022. PipelineC. https://github.com/JulianKemmerer/

PipelineC/wiki
[6] Max Korbel. 2022. Rapid open hardware development framework. In Proc. Work-

shop Open-Source EDA Technol.

[7] Sylvain Lefebvre. 2022. Silice. https://github.com/sylefeb/Silice/tree/5003ec72.
[8] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A compiler

infrastructure for accelerator generators. In Proc. ACM Int. Conf. Arch. Support
for Programming Lang. Operating Syst. https://doi.org/10.1145/3445814.3446712

[9] Oron Port and Yoav Etsion. 2017. DFiant: A dataflow hardware description
language. In Proc. Int. Conf. Field Programmable Logic Appl. IEEE. https://doi.
org/10.23919/fpl.2017.8056858

[10] Frans Skarman and Oscar Gustafsson. 2023. Spade: an expression-based HDL
with pipelines. In Proc. Workshop Open-Source Des. Automat.

[11] SpinalHDL contributors. 2022. SpinalHDL. https://github.com/SpinalHDL/
SpinalHDL.

https://github.com/amaranth-lang/amaranth
https://github.com/amaranth-lang/amaranth
https://doi.org/10.3990/1.9789036538039
https://circt.llvm.org/
https://github.com/JulianKemmerer/PipelineC/wiki
https://github.com/JulianKemmerer/PipelineC/wiki
https://github.com/sylefeb/Silice/tree/5003ec72
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.23919/fpl.2017.8056858
https://doi.org/10.23919/fpl.2017.8056858
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL

	Abstract
	1 Introduction
	2 Pipelines
	3 Types
	4 Linear Types and Ports
	5 Future Work
	6 Conclusions
	References

