Spade: An HDL Inspired by Modern Software Languages

Frans Skarman, Oscar Gustafsson
Department of Electrical Engineering, Linkoping University
SE-581 83 Linkoping, Sweden
Email: {frans.skarman,oscar.gustafsson} @liu.se

Abstract—Spade is a new hardware description language which aims
to make hardware description easier and less error prone. It does this
by taking lessons from software programming languages, and adding
language level support for common hardware constructs, all without
compromising the low level control over what hardware gets generated.

Index Terms—Hardware Description Languages, Languages and Com-
pilers

I. INTRODUCTION

Programming Field-Programmable Gate Arrays (FPGAs) is tradi-
tionally done using Verilog or VHDL, both of which are languages
originating in the 1980s. While newer versions of the languages
incorporate more features, they are still missing out on the devel-
opments that have been made since their inception in the software
programming language world. High-Level Synthesis (HLS) has seen
a steady increase in usage in recent years and while it improves the
ease of programming FPGAs, it abstracts away a lot of the low level
details of the FPGA.

Spade' is a new Hardware Description Language (HDL) which
attempts to improve the programmability of FPGAs by taking lessons
from software languages, and adding language level mechanisms
for common hardware structures, while still retaining the low level
control provided by HDLs.

The main features of Spade are:

o Type inference

o Sum and product types inspired by functional programming
« Pipeline constructs

o Immutable variables

o Combinatorial logic by default with explicit registers

Unlike most modern HDLs like Spinal HDL [1], Chisel [2] which
are embedded in Scala, Armanath [3] which is embedded in Python,
and Clash [4] which compiles a subset of Haskell to hardware, Spade
is a stand-alone language designed from the ground up as an HDL.

The rest of the paper describes some important concepts of
the Spade language and briefly touches on the architecture of the
compiler. Throughout the discussion, some parallels are drawn to
other HDLs in order to point out differences and similarities.

II. THE SPADE LANGUAGE

In Spade, variables are immutable, that is, their value is only
assigned at one point in the program. In order to facilitate this,
Spade is expression-based meaning that most language constructs
are expressions which produce a value. For example, one can assign
the “result” of an if-expression to a variable instead of conditionally
assigning values in the separate branches. In addition, Spade has
similar visibility rules to those found in most software languages:
variables are only visible after their declaration unless explicitly pre-
declared. These properties together make the code easier to reason
about, as one does not need to look through the whole program to
find where a variable is assigned.

Uhttps://gitlab.com/spade-lang/spade/

All expressions in Spade describe combinatorial circuits. Sequen-
tial logic is implemented using the reg keyword where the user
specifies a clock, a name for the register and optionally a reset signal
and reset value, as well as an expression which gives the next value
of the register. As an example, the following code describes a counter
x with a max value, max, using a clock, clk, and a reset signal, rst,
resetting the value to 0:

reg(clk) x reset (rst: @) =
if x == max {0} else {trunc(x + 1)3};

Spade describes hardware in a cycle to cycle manner. This is unlike
some modern HDLs like DFiant which uses a data flow abstraction
[5], and PipelineC which automatically pipelines pure functions and
generates state machines from functions with state [6],

A. Pipelines

Spade has language level support for describing pipelines similar
to what is provided by TL-verilog [7]. A pipeline consists of a series
of manually separated stages where the compiler inserts registers to
pipeline intermediate signals to ensure that variables stay in sync
between stages. For feedback between stages, one can refer to values
in previous or future stages, both using relative references, like
“the current stage + 17, and named stages, like “the stage named
writeback”. The pipeline depth is visible in the head of a pipeline,
as well as at the instantiating site which means that the compiler
can notify the user when code which instantiates a pipeline must be
modified to accommodate the new depth. The compiler also ensures
that results coming out of pipelines instantiated in other pipelines are
not read before they are ready. For example, the result of a five-stage
pipeline instantiated in stage cannot be read until stage « 4+ 5 and
attempting to do so results in a compilation error.

The pipelining feature enables much easier writing, and especially
modification of existing pipelines, as adding or removing additional
variables for signals in the intermediate stages is not required.

Listing 1 shows how the pipeline construct can be used to build a
circuit which computes f(a,a x b) where the multiplication is given
three cycles to complete and f is some combinatorial circuit. The
resulting hardware is shown in Fig. 1. The registers added after the
multipliers labeled by the dotted box can be retimed into a DSP block
by the synthesis tool.

Listing 1. A four-stage pipeline computing f(a,a X b).
pipeline(4) X(clk: clk, a: int<32>, b: int<32>)
-> int<64> {

let product =
reg * 3;

let result =
reg;

result

a * b;

f(a, product);

https://gitlab.com/spade-lang/spade/

Fig. 1. Hardware generated by the code in Listing 1.

B. Types and Match Expressions

Spade is a statically typed programming language with a type
system inspired by Rust and functional programming languages like
Haskell and ML. This means that Spade has primitive types, structs
and tuples, and tagged unions called enums. The enums, unlike their
C or VHDL namesake have data associated with them in addition to
being one of a set of variants. A very common use of this construct
is the Option type which is written as

enum Option<T> {
Some(val: T),
None

}

The type is generic over some type T, and can be one of two variants:
Some(val) where a value is present, and None where no value is
present. Before accessing the associated val, one must check the
variant to make sure that a value exists. The Option-type can be
seen as a valid signal together with the value it validates.

The main way to use enums is together with the match-statement
which is similar to but more powerful than a switch-case-block
in C or Verilog. It requires listing each of the potential values an
expression can hold can hold as patterns, and produces a result de-
pending on which pattern matches the current value. As an example,
the following code shows the use of patterns for tuples, wild card
patterns (_) and binding of variables to sub-patterns in a block of
code which sets result to the first of two Option values which is
Some, defaulting to O if both are None:

let result = match (a, b) {
(Some(x), _) => x,
(_, Some(x)) => x,
_=>20

3

C. Type Inference

While Spade is statically typed, the variable-types in function
bodies can usually be omitted as the compiler can infer them from the
context in which they are used, as can be seen by the lack of explicit
types in the previous code samples. This provides the correctness
benefits of a static type-system but alleviates the need for the user
to manually write out any types, which has benefits to productivity
as well as allowing more complex types to be used ergonomically.
While the type inference can technically be implemented for function
arguments as well, Spade requires explicit types there in order to
make the types part of the contract of the module.

D. Memories

Memories are modeled by built in functions which accept an array
of write and read ports. This is done in part to require the user to
be explicit when memories are instantiated rather than relying on the
synthesis inferring it from the structure of the code. Another reason
for this design choice is that expressions in Spade always describe
whole values, and variables are always updated in full on every clock
cycle. This is fundamentally different from memories where only
parts of a value are changed.

At present, parts of memory ports must be passed between units
as normal arguments and return values, which is unergonomic when
multiple units interact with the memory. For this reason, it is
interesting to add the concept of ports to the language: a unit which
uses a memory accepts a port as an argument, through which it can
interact with the memory. Memory instantiating then produces a set
of ports which can be distributed to units which need them. Finally,
affine types can be used to ensure that each memory port is only
used once. This can also be used to model other finite resources,
such as shared hardware. A similar scheme is implemented in the
Dhalia language [8].

III. COMPILER ARCHITECTURE

The Spade compiler is a stand-alone program written in the Rust
programming language. It is a multi-stage compiler which performs in
order: lexing and parsing to an AST, semantic analysis which results
in a High-Level Intermediate Representation (HIR), type inference,
more semantic analysis and finally lowering to a Medium-Level
Intermediate Representation (MIR) which can be compiled to a target
language, currently System Verilog. At present, optimizations are
delegated to the synthesis tool during Verilog synthesis, but there
is most likely room for optimizations before that, at the Spade level.

As future work, it is also interesting to explore the use of
existing compiler infrastructure for hardware generation, like one
of the immediate representations in CIRCT [9] such as LLHD [10]
which can offer language independent optimization as well as code
generation to languages other than System Verilog.

IV. CONCLUSIONS

Spade is a HDL which takes inspiration from modern software
programming languages by including a rich type system with type
inference, pattern matching constructs and immutable variables by
default. When coupled with abstractions for common hardware
constructs such as registers, memories and pipelines, the language
becomes more ergonomic than the traditional HDL alternatives,
without sacrificing the low level control which is lost when using
HLS or higher level HDLs.

REFERENCES
[1

—

SpinalHDL contributors, “SpinalHDL,” https://github.com/SpinalHDL/
SpinalHDL, 2022.

[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis,
J. Wawrzynek, and K. Asanovi¢, “Chisel: Constructing hardware in a
Scala embedded language,” in Proc. Des. Automat. Conf., Jun. 2012,
pp. 1212-1221.

[3] Amaranth contributors, “Amaranth HDL,” https://github.com/
amaranth-lang/amaranth, 2022.

[4] C. Baaij, “Digital circuits in cAaSH,” PhD. Thesis, University of Twente,

Jan. 2015.

[5] O. Port and Y. Etsion, “DFiant: A dataflow hardware description
language,” in Proc. Int. Conf. Field Programmable Logic Appl. 1EEE,
Sep. 2017.

[6] J. Kemmerer, “PipelineC,” Mar. 2022. [Online]. Available: https:
/lgithub.com/JulianKemmerer/PipelineC/wiki

[71 S. F. Hoover, “Timing-abstract circuit design in transaction-level Ver-

ilog,” in Proc. IEEE Int. Conf. Comput. Des. 1EEE, Nov. 2017.

R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,

A. Sampson, and Z. Zhang, “Predictable accelerator design with time-

sensitive affine types,” in Proc. ACM SIGPLAN Conf. Program. Lan-

guage Des. Implementation. ACM, Jun. 2020.

[9] CIRCT Project, “CIRCT,” https://circt.llvm.org/, 2022.

[10] E. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: a multi-level
intermediate representation for hardware description languages,” in Proc.
ACM SIGPLAN Conf. Program. Language Des. Implementation, Jun.
2020.

[8

—

https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://github.com/amaranth-lang/amaranth
https://github.com/amaranth-lang/amaranth
https://github.com/JulianKemmerer/PipelineC/wiki
https://github.com/JulianKemmerer/PipelineC/wiki
https://circt.llvm.org/

	Introduction
	The Spade Language
	Pipelines
	Types and Match Expressions
	Type Inference
	Memories

	Compiler Architecture
	Conclusions
	References

